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Abstract

We present the results of a search for pair production of scalar top quarks (~t1)

in an R-parity violating supersymmetry scenario in 106 pb�1 of pp collisions

at
p
s = 1:8 TeV collected by the Collider Detector at Fermilab. In this mode

each ~t1 decays into a � lepton and a b quark. We search for events with two � 's,

one decaying leptonically (e or �) and one decaying hadronically, and two jets.

No candidate events pass our �nal selection criteria. We set a 95% con�dence

level lower limit on the ~t1 mass at 122 GeV=c
2 for Br(~t1 ! �b) = 1.

Typeset using REVTEX
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Many supersymmetry (SUSY) models [1] predict that the �rst two generations of super-

symmetric partners of the quarks and the leptons (squarks and sleptons) are approximately

mass degenerate. However, the mass of the lightest top squark (~t1 or `stop') can be relatively

light due to a large mixing between the interaction eigenstates, ~tL and ~tR. This mixing de-

pends in part on the top Yukawa coupling which is largely due to the heavy top quark mass,

and it is possible that ~t1 is lighter than the top quark [2].

R-parity (Rp) is a multiplicative quantum number de�ned as Rp � (�1)3B+L+2S, where
S, B and L are the spin, baryon and lepton numbers of a particle, respectively [3]. Rp

distinguishes SM particles (Rp = +1) from SUSY particles (Rp = �1). Conservation of Rp

requires SUSY particles to be produced in pairs and to decay, through a cascade, to SM

particles plus the stable lightest supersymmetric particle. The Rp conservation, which is not

required by SUSY, is often built into the theory by hand and is justi�ed phenomenologically

by limits on the proton lifetime, the absence of avor-changing neutral currents, etc. Viable

Rp violating (R=p) models can be built by adding explicit R=p terms with trilinear couplings

(�ijk, �
0

ijk, �
00

ijk) and spontaneous R=p terms with bilinear couplings (�i) to the SUSY La-

grangian [4,5], where i, j and k are the generation indices. These couplings allow B or L

violating interactions and, if �033k or �3 is non-zero, a ~t1 may decay directly to SM �nal states

which are experimentally observable.

At the Fermilab Tevatron, in p�p collisions, stop pairs might be produced strongly via

Rp-conserving processes through gg fusion and qq annihilation. In R=p scenarios each stop

can decay into a tau (�) lepton and a bottom (b) quark with a branching ratio, Br, which

depends on the coupling constants of the particular model. A good �nal state search topology

identi�es either an electron or a muon (` = e or �) from the � ! `�`�� decay, as well as a

hadronically decaying tau (�h) lepton, and two or more jets.

We present the results of a search for ~t1
�~t1 ! `�hjj events, in the framework of R=p-

MSSM, using 106 pb�1 of pp collisions at
p
s = 1.8 TeV collected by the Collider Detector

at Fermilab (CDF) during the 1992�95 run of the Tevatron (Run I). CDF is a general

purpose detector and has been described in detail elsewhere [6,7]. We briey describe the
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subsystems of the CDF detector relevant to this analysis. The location of the pp collision

event vertex (zvtx) is measured along the beam direction [8] with a time projection chamber.

The transverse momentum (pT ) of charged particles is measured in the region j�j < 1:0

by a central tracking chamber (CTC) which is immersed in a uniform 1.4 T solenoidal

magnetic �eld [8]. Electromagnetic (EM) and hadronic (HAD) calorimeters, segmented in

a projective tower geometry surrounding the solenoid and covering the region j�j < 4:2,

are used for identi�cation of electrons, taus, and jets and the measurement of the missing

transverse energy (E=T ). The central strip chamber (CES) is embedded in the central EM

calorimeter at a depth of approximately shower maximum, and is used for further electron

identi�cation as well as �0 !  identi�cation from �h decays. A muon subsystem is located

outside the hadron calorimeter and has trigger coverage for the region j�j < 0:6.

The analysis begins with a sample of events which pass a three-level trigger system [6]

which requires a single isolated lepton (e or �) with pT > 8 GeV/c (j�j < 1:0 if it is an

electron and j�j < 0:6 if it is a muon) [9]. O�ine, the lepton is required to have pT >

10 GeV/c, come from the event vertex, and pass more restrictive identi�cation and isolation

requirements [7,10]. An event is removed as a Z boson candidate if it contains a second,

loosely identi�ed same-avor opposite-sign lepton with 76 < M`` < 106 GeV=c2. To maintain

the projective geometry of the calorimeter, all events are required to have jzvtxj � 60 cm.

An inclusive `�h subsample is made by requiring each event to further contain a high pT ,

isolated, hadronically decaying � lepton candidate with p�hT > 15 GeV=c [11] and j�j < 1:0.

A �h candidate is identi�ed as a calorimeter cluster which satis�es the following require-

ments [12]: (i) not identi�ed as an e or �; (ii) one or three tracks with pT > 1 GeV=c

in a 10� cone around the calorimeter cluster center; (iii) the scalar sum of the pT of all

tracks in �R = 0:4 around the cluster center, excluding those in the 10� cone, less than

1 GeV=c; (iv) fewer than three �0 !  candidates identi�ed in the CES; (v) more than

4 GeV of ET measured in the calorimeter; (vi) 0:5 < ET=p
�h
T < 2:0 (1:5) for one track

(three tracks); (vii) the cluster width of the calorimeter cluster in �-� space less than

0:11 (0:13) � 0:025 (0:034) � ET [GeV]=100 for one track (three tracks); and (viii) the
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invariant mass reconstructed from tracks and �0's less than 1.8 GeV=c2. The charge of the

�h object is de�ned as the sum of the track charges, and is required to have unit magnitude

and have the opposite sign (OS) of the ` candidate. A total of 642 events pass the above

requirements; 16 of these have two or more jets (identi�ed using a �xed cone algorithm

with �R = 0:4 [13]) with ET > 15 GeV and j�j < 2:4. Note that, as expected, the four

`�h+jets candidate events which were found in the search for tt ! (W+b)(W��b) [12] pass

the kinematic requirements for this search.

The dominant backgrounds come from Z=�(! �+��)+jets, tt, diboson (W+W�, W�Z,

ZZ) production, and fake `�h combinations from W+jets and QCD events. Monte Carlo

(MC) programs with CTEQ4L parton distribution functions (PDFs) [14] and a detector

simulation are used to estimate the background rates by simulating the kinematics of

Z=�; W; tt, and diboson events. All SM processes except W=Z+jets events are gener-

ated using isajet [15]; vecbos [16] is used for vector boson plus jets production and decay,

followed by herwig [17] for the fragmentation and hadronization of the quarks and gluons.

The cross sections for Z/�, tt andW+W� production are normalized to the CDF measure-

ments [18{21] and next-to-leading order (NLO) calculations for W�Z and ZZ production

are used [22,23]. The number of fake events from QCD is estimated from the data and

assumes that the number of OS events, after subtracting o� the non-fake contribution, is

identical to the number of like-sign (LS) events observed in the data as expected from QCD

sources i.e., NOS
QCD = NLS

data �NLS
MC .

The �nal optimized data selection requirements are based on simulated ~t1
�~t1 production,

using isajet [15] and the CDF detector simulation, background expectations, and a control

sample. See Fig. 2. To reduce the number of W+jets events we require MT (`; E=T ) <

35 GeV=c2 where MT (`; E=T ) is the transverse mass of the ` and the event E=T , de�ned

as MT (`; E=T ) �
q
2 p`TE=T (1� cos�`E=T ), and where �`E=T is the azimuthal angle di�erence

between the ` and the E=T . To reduce the QCD backgrounds we require �pT (`; �h; E=T ) �
p`T + p�hT + E=T > 75 GeV=c. A control sample of `�h+0 jet events with similar kinematic

requirements (MT (`; E=T ) < 25 GeV/c2, j~p`T + ~E=T j > 25 GeV/c) is selected to show that

9
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FIG. 1. The number of charged tracks in each �h candidate for the opposite-sign (OS) `�h+0

jet control sample. The data are compared to the MC expectation (all background histograms are

summed) which is dominated by real �h's from Z ! �+�� production.

the backgrounds are well modeled, dominated by real Z ! �+�� production, and for later

use in the acceptance calculations. Figure 1 shows the charged track multiplicity of the

hadronic tau decays (removing the 1 and 3-prong requirements) for this sample and shows

good agreement with background expectations.

A comparison of the OS `�h+ � 2 jet data and background estimation is shown in Fig. 2

before the �nal MT (`; E=T ) and �pT (`; �h; E=T ) cuts. A breakdown of the backgrounds and

data is given in Table I. The backgrounds appear well modeled. A total of 3.2+1:4�0:3 events are

predicted from all SM sources, dominated by Z(! �+��)+jets production. No candidate

events pass the �nal ~t1
�~t1 selection criteria, which is unusual but expected in roughly 3% of

experiments when taking into account the statistical and systematic uncertainties.

In order to set limits on ~t1
�~t1 production and decay, the acceptances and e�ciencies are

normalized to the rate of Z(! �+��)+0 jet decays using the following relation:

�(~t1
�~t1 ! �+��b�b) =

 
NObs
stop �NBG

stop

NObs
Z �NBG

Z

!
�RAcc �RTrig � �Z � Br(Z ! �+��) (1)
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FIG. 2. The �nal data selection criteria for the OS `�h+ � 2 jet sample. The arrows show

the �nal event selection requirements. The assumed stop mass is 100 GeV/c2. The quantities

�pT (`; �h; E=T ) and MT (`; E=T ) are de�ned in the text.
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FIG. 3. The 95% C.L. upper limit on cross section for ~t1
�~t1 production compared to the NLO

calculations

where NObs
stop and NBG

stop (NObs
Z and NBG

Z ) are the number of candidate events observed in the

data and expected background in the � 2 jet/~t1
�~t1 (0 jet/Z) selections, RAcc is the ratio of the

Z to ~t1
�~t1 acceptances and RTrig is the ratio of the trigger e�ciencies. The primary advantage

of this approach is that potential systematic uncertainties in the estimate of identi�cation

and isolation e�ciencies are reduced in the ratio of ~t1
�~t1 to Z production.

The 95% con�dence level (C.L.) limits on �(~t1
�~t1 ! �+��b�b) in the e, � and combined

channels are found using Eq. (1) and come from a Bayesian integration of the likelihood as

a function of the cross section, integrating over the correlated and uncorrelated systematic

uncertainties on the expected signal with a at prior. The RAcc term is a function of

12



the ~t1 mass and varies in the range 0.34 < Re
Acc < 2.15 (0.35 < R�

Acc < 1.87) for the

e (�) channel over the range 70 < m~t1 < 130 GeV/c2. The RTrig term varies between

0:95 < Re
Trig < 0:97 (0:99 < R�

Trig < 1:00) for the e (�) channel with an uncertainty of

about 1%. (The acceptance and trigger e�ciencies for the Z control sample for this analysis

are 1.19% (0.69%) and 74.5% (83.0%) for the e (�) channel respectively.) Assuming lepton

universality gives �Z � Br(Z ! �+��) = �Z � Br(Z ! `+`�) = 231� 12 (stat+sys) pb [24].

The dominant uncertainty is due to the statistical uncertainty in NObs
Z �NBG

Z and is 17.0%

(24.9%) [25]. Additional uncertainty comes from our estimation of RAcc which is dominated

by the variation in the ~t1
�~t1 acceptance from choices of the QCD renormalization scale Q2,

PDFs, amount of gluon radiation, the jet energy scale and the statistical uncertainty in the

MC samples [26]. The total uncorrelated uncertainties vary between 17.1 and 17.7% (25.1%

and 25.4%), and the total correlated uncertainties vary between 9.3 and 14.1%.

Figure 3 shows the �nal 95% C.L. upper limits on the cross section times Br for the e, �

and combined channels, along with the NLO prediction of the production cross sections [27].

The 95% C.L. lower limits on M~t1
are 110 and 75 GeV=c2 for the e and � channels, respec-

tively, where we have assumed Br = 1 for simplicity. Combining the two results yields a

limit of 122 GeV=c2. Since our analysis does not distinguish the quark avors in jet recon-

struction, these results are equally valid for any �033k coupling. These results substantially

improve on the currently most stringent mass limit which comes from the ALEPH exper-

iment [28] which excludes ~t1 masses below 93 GeV=c2 using e+e� ! ~t1
�~t1 ! �+��+ 2 jets

topology with an assumption of �033k 6= 0 (k = 1, 2 or 3).

In conclusion, we have searched for ~t1
�~t1 production using 106 pb�1 data in pp collisions

at
p
s = 1.8 TeV. We have examined the `�h+ � 2 jet �nal state within an R=p SUSY scenario

in which each ~t1 decays to a � lepton and a b quark via non-zero �0333 or �3 couplings. No

~t1
�~t1 event candidates pass our selection criteria and we have set a 95% C.L. lower limit on

the ~t1 mass at 122 GeV=c
2 for Br = 1.

We thank the Fermilab sta� and the technical sta�s of the participating institutions for
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Sample t�t Diboson W + jets Z=� ! �+�� QCD Tot NObs

OS `� 1.2�0.3 2.3�0.8 101�6 225�9 301�18 631�21 642

`�h+ � 2 jets 1.0�0.2 0.4�0.1 3.4�0.4 7.7�0.5 8�3 21�3 16

MT (`; E=T ) < 35 GeV/c2 0.15�0.07 0.14�0.06 0.5�0.2 6.0�0.4 8�3 15�3 10

�pT (`; �h; E=T ) > 75 GeV=c 0.15�0.07 0.08�0.03 0.2�0.1 2.8�0.3 0+1:4
�0 3.2+1:4

�0:3 0

TABLE I. Summary of the number of OS events in the data and expectations for the background sources

as each selection requirement is applied.
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